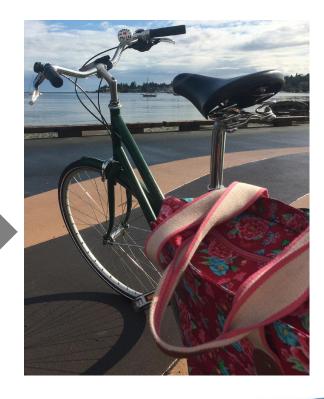
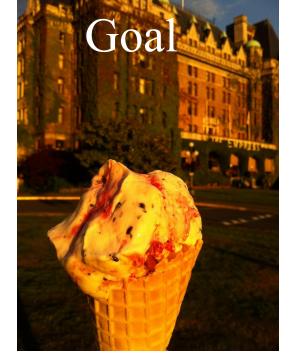
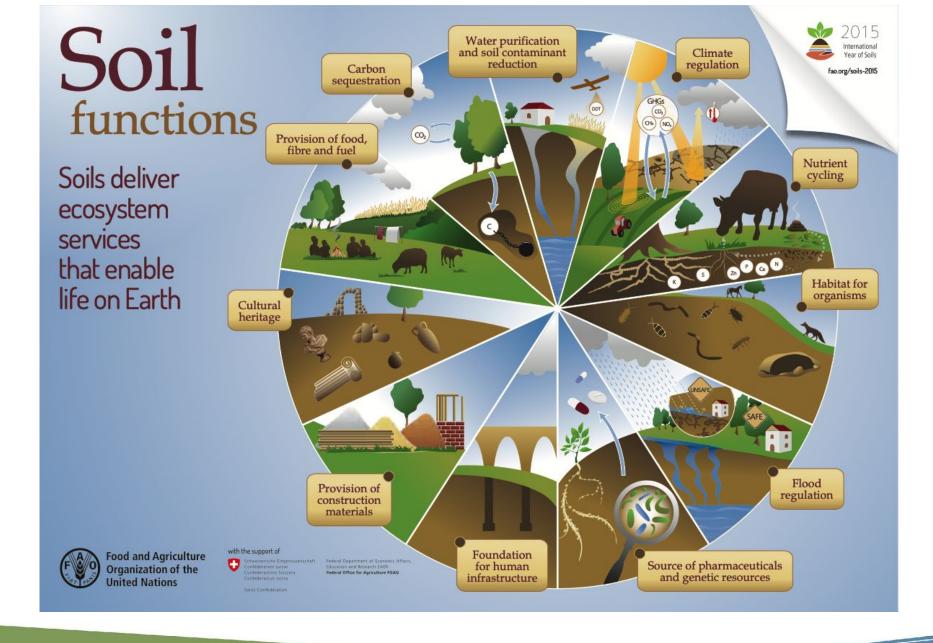

Choosing soil health measurements for large-scale adoption

Charlotte Norris, PhD, PAg

Natural Resources Canada, Canadian Forest Service BC ACARN Data Protocols Workshop February 23, 2023







soil health

The capacity of a soil to function as a vital living ecosystem that sustains plants, animals, and humans.

Received: 16 March 2020 Accepte

Accepted: 18 March 2020

DOI: 10.1002/agj2.20234

Agronomy Journal

FORUM

Introducing the North American project to evaluate soil health measurements

Soil Health Institute, 2803 Slater Road, Suite 115, Morrisville, NC 27560, USA

Correspondence

Abstract

The North American Project to Evaluate Soil Health Measurements was initiated with the objective to identify widely applicable soil health measurements for evaluation

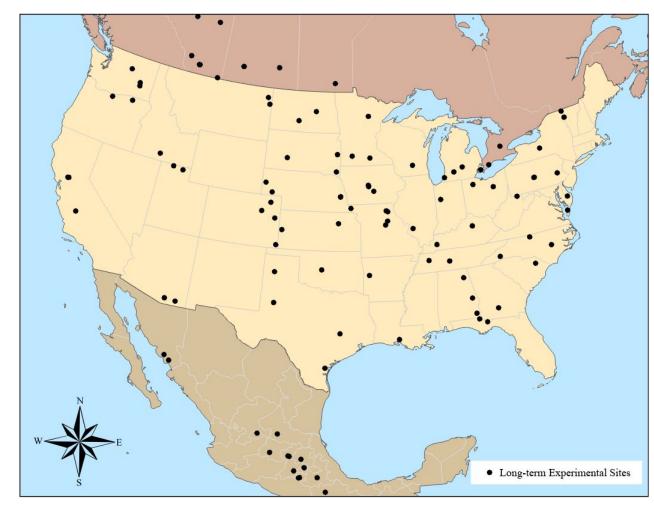
North American Project to Evaluate Soil Health Measurements

Objective – a large-scale broad assessment of soil health indicators, both old and new, across a wide range of soils, climates, and management systems

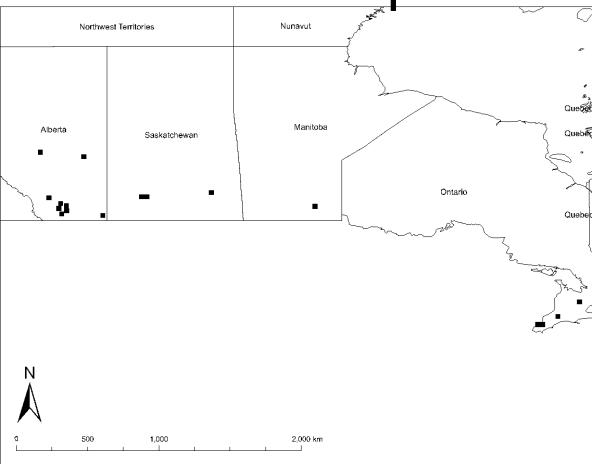
☐ to identify the sensitivity of widely applicable soil measures to changes in soil condition from soil health management practices

NAPESHM - Measurements

Properties	Indicators	Method	Reference
Soil physical	Soil texture	Pip ette method with three size classes (2000-50, 50-2, and <2 μ m)	Gee and Bauder, 1986
	Bulk density	Core method of 7.6 cm diameter and 7.6 cm depth	Blake and Hartge, 1986
	Aggregate stability	Wet sieve procedure with weight measurement	Kemper and Roseneau, 1986
	Water content	Ceramic plate method measured at -33 kPa on intact cores and -1500 kPa on repacked soils	Klute, 1986
	Soil stability index	Combination of wet and dry sieving at multiple sieve sizes	Franzluebbers et al., 2000
	Water in filtration rate K_{fs}	Two-ponding head method	Reynolds and Elrick, 1990
Soil chemical	Soil pH	1:2 soil:water	Thomas, 1996
	Soil electrical conductivity	1:2 soil:water	Rhoades, 1996
	Extractable phosphorus	Mehlich-3 extractant for all and Olsen extractant when soil pH≥7.2	Olsen and Sommers, 1982 or Sikora and Moore, 2014
	Extractable K, Ca, Mg, Na	Mehlich-3 extractant for all and ammonium acetate extraction when soil pH≥7.2	Knudsen et al., 1982 or Sikora and Moore, 2014
	Extractable Fe, Zn, Cu, Mn	Mehlich-3 extractant for all and DTPA when soil pH≥7.2	Lindsay and Norvell, 1978 or Sikora and Moore, 2014
	Cation exchange capacity	Sum of cations from Mehlich-3 extrant for all and ammonium acetate when soil pH≥7.2	Olsen and Sommers, 1982 or Sikora and Moore, 2014
	Base saturation	Calculation of cations from Mehlich-3 extractant for all and ammonium acetate when soil pH≥7.2	Olsen and Sommers, 1982 or Sikora and Moore, 2014
	Sodium adsorption ratio	Saturated paste extract followed by inductively coupled plasma spectroscopy	Miller et al., 2013
Soil biological	Soil organic carbon	Dry combustion, corrected for inorganic carbon, if present, using pressure-calcimeter	Nelson and Sommers, 1996 or Sherrod et al., 2002
	Active carbon	Permanganate oxidizable carbon (POXC) digestion followed by colorimetric measurement	Weil et al., 2003
	Short-term carbon mineralization	4-day incubation followed by CO ₂ -C evolution and capture at 50 % water-filled pore space	Zibilske, 1994
	Total nitrogen	Dry combustion	Nelson and Sommers, 1996
	Nitrogen mineralization rate	Short-term anaerobic incubation with ammonium and nitrate measured colorimetrically	Bundy and Meisinger, 1984
	Soil protein index	Autoclaved citrate extractable	Schindelbeck, 2016
	β-glucosidase	Assay incubation followed by colorimetric measurement	Tabatabai et al., 1994
	β-glucosaminidase	Assay incubation followed by colorimetric measurement	Deng and Popova, 2011
	Phosphatase	For soil pH≥7.2, alkaline phosphatase, otherwise acid phosphatase. Assay incubation followed by colorimetric measurement	Acosta-Martinez and Tabatabai, 2011
	Arylsulfatase	Assay incubation followed by colorimetric measurement	Klose et al., 2011
	Phospholipid Fatty Acid	Bligh-Dyer extractant, solid phase extraction, transesterification, and gas chromatography	Buyer and Sasser, 2012
	Genomics	16S rRNA, ITS, and shotgun metagenomics	Thompson et al., 2017 and Quince et al., 2017
Other	Reflectance	vis/NIR diffuse reflectance spectroscopy	Veum et al., 2015
	Crop yield	Obtained from historical plot yield	



North American Project to Evaluate Soil Health Measurements


(NAPESHM)

- 2029 samples
- 120 sites
- >10 yr old
- 1 of 5 criteria
 - 1. Physical disturbance
 - 2. Cover crops
 - 3. Crop diversity
 - 4. Nutrient management
 - 5. Water management and Location

Canadian component

- April June 2019
- 10 sites across Canada
- 16 long-term experimental trials
- 103 treatments
- 333 plots (EUs)
 - 5 subsamples/plot

Norris et al. 2023. The story of long-term research sites and soil health in Canadian agriculture. Can. J. Soil Sci.

Physical measurements

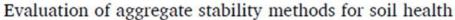
- Particle size analysis pipette method
- Water at field capacity intact cores (-33 KPa with tension table)
- Aggregates -

Cornell wet aggregate stability test wet aggregate stability test water stable aggregate mean weight diameter image recognition using smartphone SLAKES app

Accepted: 10 February 2022 Published online: 30 March 2022 Received: 11 November 2021 DOI: 10.1002/saj2.20395 Soil Science Society of America Journal

Carbon-sensitive pedotransfer functions for plant available water

Selecting soil hydraulic properties as indicators of soil health: Measurement response to management and site characteristics


Elizabeth L. Rieke a, , Dianna K. Bagnall , Cristine L.S. Morgan , Kade D. Flynn ,

Julie A. Howe c, Kelsey L.H. Greub a, G. Mac Bean a, Shannon B. Cappellazzi a, Michael Cope a,

Daniel Liptzin a, Charlotte E. Norris a, Paul W. Tracy a, Ezra Aberle d, Amanda Ashworth e,

SOIL PHYSICS & HYDROLOGY

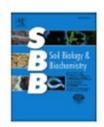
Chemical measurements

Carbon -

- soil organic carbon
- permanganate oxidizable carbon
- potential carbon mineralization
- B-glucosidase enzyme activity
- water extractable organic carbon

Nitrogen -

- soil nitrogen
- nitrogen mineralization rate
- B-glucosaminidase
- water extractable nitrogen
- water extractable ammonium and nitrate



Soil Biology and Biochemistry 172 (2022) 108708

Contents lists available at ScienceDirect

Soil Biology and Biochemistry

journal homepage: www.elsevier.com/locate/soilbio

An evaluation of carbon indicators of soil health in long-term agricultural experiments

```
Daniel Liptzin <sup>a, *</sup>, Charlotte E. Norris <sup>a</sup>, Shannon B. Cappellazzi <sup>a</sup>, G. Mac Bean <sup>a</sup>, Michael Cope <sup>a</sup>, Kelsey L.H. Greub <sup>a</sup>, Elizabeth L. Rieke <sup>a</sup>, Paul W. Tracy <sup>a</sup>, Ezra Aberle <sup>b</sup>, Amanda Ashworth <sup>c</sup>, Oscar Bañuelos Tavarez <sup>d</sup>, Andy I. Bary <sup>e</sup>, R.L. Baumhardt <sup>f</sup>, Alberto Borbón Gracia <sup>g</sup>, Daniel C. Brainard <sup>h</sup>, Jameson R. Brennan <sup>i</sup>, Dolores Briones Reyes <sup>g</sup>, Darren Bruhjell <sup>j</sup>, Cameron N. Carlyle <sup>k</sup>, James J.W. Crawford <sup>1</sup>, Cody F. Creech <sup>m</sup>, Steve W. Culman <sup>n</sup>, Bill Deen <sup>o</sup>, Curtis J. Dell <sup>p</sup>, Justin D. Derner <sup>q</sup>, Thomas F. Ducey <sup>r</sup>, Sjoerd W. Duiker <sup>s</sup>, Miles F. Dyck <sup>t</sup>,
```


Applied Soil Ecology 185 (2023) 104793

Biological measurements

PLFA – identified differences with management practices

Genomics – 16S rRNA identified differences with reduced tillage

Contents lists available at ScienceDirect

Applied Soil Ecology

journal homepage: www.elsevier.com/locate/apsoil

Use of phospholipid fatty acid analysis as phenotypic biomarkers for soil

Charlotte E. Norris ^{a, b, *}, Mathew J.B. Swallow ^c, Daniel Liptzin ^a, Michael Cope ^a, G. Mac Bean ^a, Shannon B. Cappellazzi ^a, Kelsey L.H. Greub ^a, Elizabeth L. Rieke ^a, Paul W. Tracy ^a, Cristine L.S. Morgan ^a, C. Wayne Honeycutt ^a

health and the influence of management practices

Soil Biology and Biochemistry 168 (2022) 108618

Contents lists available at ScienceDirect

Soil Biology and Biochemistry

journal homepage: www.elsevier.com/locate/soilbio

Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage

Elizabeth L. Rieke ^{a,*}, Shannon B. Cappellazzi ^a, Michael Cope ^a, Daniel Liptzin ^a, G. Mac Bean ^a, Kelsey L.H. Greub ^a, Charlotte E. Norris ^a, Paul W. Tracy ^a, Ezra Aberle ^b, Amanda Ashworth ^c, Oscar Bañuelos Tavarez ^d, Andy I. Bary ^e, R.L. Baumhardt ^f, Alberto Borbón Gracia ^g, Daniel C. Brainard ^h, Jameson R. Brennan ⁱ, Dolores Briones Reyes ^g, Darren Bruhjell ^j, Cameron N. Carlyle ^k, James J.W. Crawford ¹, Cody F. Creech ^m, Steve W. Culman ⁿ, Bill Deen ^o,

3 minimum measurements

Total organic carbon

Aggregate stability

24-hour carbon mineralization

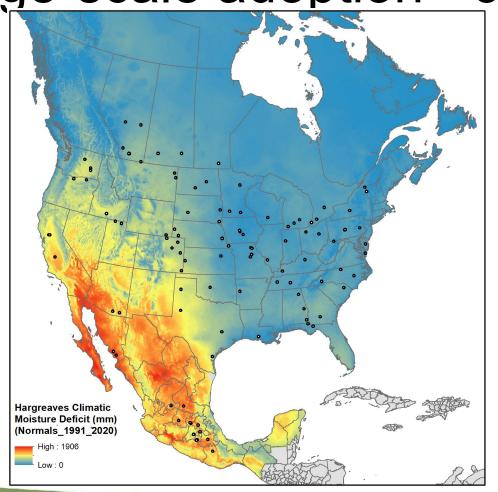
Soil Security 10 (2023) 100084

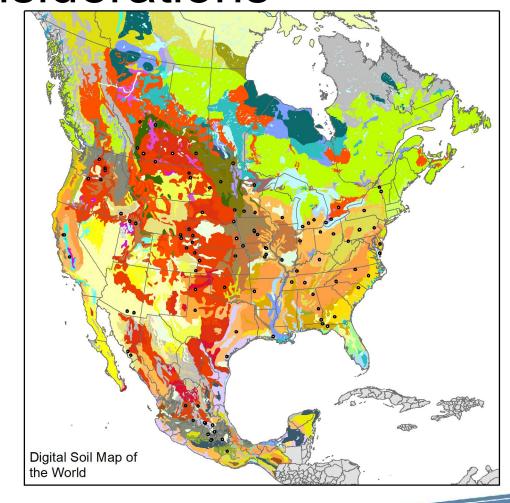
Contents lists available at ScienceDirect

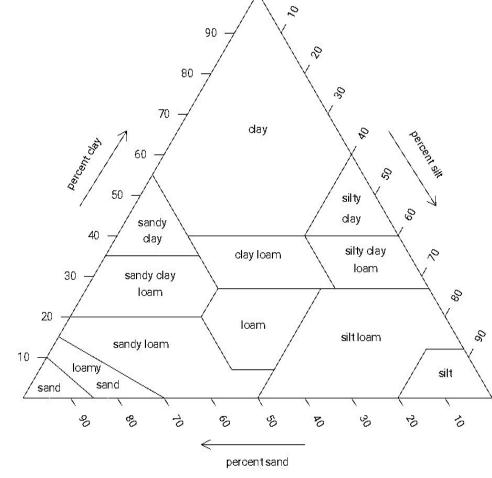
Soil Security

journal homepage: www.sciencedirect.com/journal/soil-security

A minimum suite of soil health indicators for North American agriculture

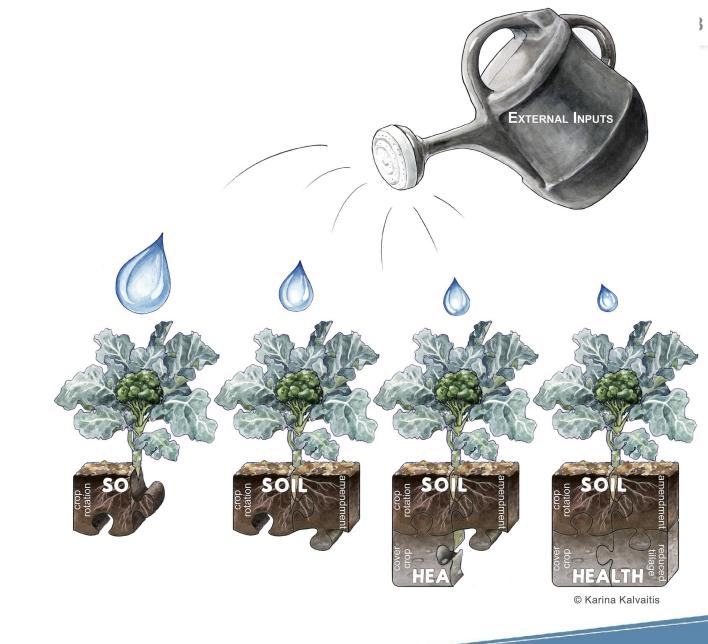

Dianna K. Bagnall *,1, Elizabeth L. Rieke 1, Cristine L.S. Morgan, Daniel L. Liptzin, Shannon B. Cappellazzi, C. Wayne Honeycutt

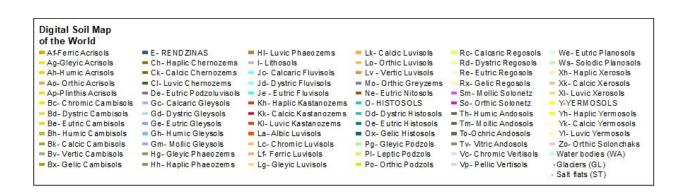

Soil Health Institute, 2803 Slater Road, Suite 115, Morrisville, NC 27560, USA

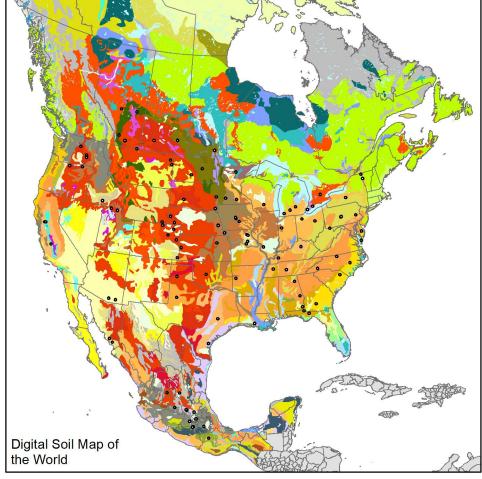

Choosing soil health measurements for large-scale adoption - considerations

Choosing soil health measurements for large-scale adoption - considerations

- Methodology -
 - the same method & lab
 - e.g., pH in water vs CaCl₂
- Data availability -
 - breadth and depth
 - consistent format and available
 - e.g., FAIR
- Laboratory capacity -
 - beyond research but also for managers, practitioners, and the public




Thank you!


Questions?

email: charlotte.norris@nrcan-rncan.gc.ca

