Remote Sensing for Evaluating Health of Agricultural Ecosystems

Bing Lu, Ali Jamali, Parisa Ahmadi, Lilian Yang, Margaret Schmidt Department of Geography, Simon Fraser University b_lu@sfu.ca

SIMON FRASER UNIVERSITY SFU is on unceded and traditional territories of the x^wmə0k^wəy'əm (Musqueam), S<u>k</u>wxwú7mesh Úxwumixw (Squamish), səlïlwəta?ł (Tsleil-Waututh), q'ic'əy' (Katzie), k^wik^wəð'əm (Kwikwetlem), Qayqayt, Kwantlen, Semiahmoo and Tsawwassen Nations.

Overview

1. Crop Health: Monitoring Blueberry Plants and Scorch Virus

2. More Applications of Remote Sensing for Crop Health

3. <u>Soil Health</u>: Mapping Amount of Crop Residues

4. More Applications of Remote Sensing for Soil Health

5. Ecosystem Health: Landscape Fragmentation

1. Crop Health: Monitoring Blueberry Plants and Scorch Virus

A healthy bush

Infected bushes (e.g., leaf blighting)

Benefits of early detection: aphid control and removal of infected plants, reduce the spread, save resources, support insurance claim etc.

Why Use Remote Sensing for Detection?

Field Survey VS Remote Sensing

Spatial and Temporal Analysis

Study Areas and Field Surveys

Study Area in Pitt Meadows and Abbotsford, BC

Field Surveys in 2022

Severity Level Evaluation

Drone Flights and Images

Multi-rotors

Fixed Wings (Terramera)

Images with Spatial Resolution of 0.4 ~ 10 cm

Classification Modeling and Preliminary Results

Machine Learning and Deep Learning Models

Digital Elevation Model

E2R3-6
H30
H19

H43
H19

H43
H15

H72
H16

H72
H16

H72
H16

H73
H16

H74
H28

H75
H3

H27
H3

H28
H28

H29
H29

H3
H28

H27
H3

H28
H28

H27
H28

H28
H28

H29
H28

H27
H3

H28
H28

H29
H28

H28

Extraction of Bushes

Training sites

Healthy

Infected

2. More Applications of Remote Sensing for Crop Health

1). Leaf Area Index (LAI) / Chlorophyll Content / Biomass / Yield

Chlorophyll Content of April and June (Lu et al, 2017)

Potato Yield (Li et al, 2021)

2). Temperature / Water Stress

Temperature Measured on Ground (Jones, 2009) Temperature of Barley Field (Raeva et al, 2021)

3). Nutrient Status / Diseases / Pests

Nitrogen Status Diagnosis (Zha et al, 2020)

Pest Detection (Gao et al, 2020)

4). Weeds

Detection of Weeds (Peña et al, 2015)

3. Soil Health: Mapping Amount of Crop Residues

Crop Residues are Critical for Soil Health

Study Areas in Camrose, AB

Field Surveys and Data Collection

(Photo credit: Bruce Milligan)

Site Photos and Collection of Residue Samples in 2022

Collection of Drone and Tasked-Satellite Images

Data Processing Preliminary Results

Drone and Satellite Images

Differentiation of Residues/Soils on Ground Photos

Image Features

Crop Residues

4. More Applications of Remote Sensing for Soil Health

0

1). Soil Carbon Mapping

Drone and Satellite Imaging Field Sampling Mid-Infrared Spectroscopy and Lab Analysis (Smukler, 2023)

+

Organic Carbon Maps (<u>Biney</u> et al, 2021)

2). Soil Moisture / Temperature

Soil Moisture Map (Merzouki et al, 2019)

Soil Temperature Map (Reference)

3). Micro Terrain

Digital Elevation Model (5cm) Area solar radiation (April) (<u>Lu et al</u>, 2017)

Wetness index

4). Soil Erosion / Stability

5). Dairy Farms / Greenhouse Gases

(Carabassa et al, 2021)

Manure Piles (<u>Park et al</u>, 2021)

PM₁₀ and CO₂ Maps (<u>Becciolini et al</u>, 2017)

5. Ecosystem Health: Landscape Fragmentation

Landscape Elements (Lausch et al., 2014)

Туре	Landscape metric	Abbreviation	Description
Area metrics	Mean Patch Size*	MPS	The average area of all patches in the landscape (unit: ha).
	Total Core Area*	TCA	The sum of the core areas of each patch of the corresponding patch type (unit: ha).
	Normalized TCA**	NTCA	The TCA normalized by habitat abundance.
Density metrics	Patch Density*	PD	The number of patches per square kilometer (i.e., 100 ha).
	Edge Density*	ED	The total length of all edge segments per hectare for the class or landscape of consideration (unit: m/ha).
Shape metrics	Landscape Shape Index*	LSI	A modified perimeter-area ratio of the form that measures the shape complexity of the whole landscape or a specific patch type.
	Perimeter-Area Fractal Dimension*	PAFD	An index that reflects shape complexity across a range of spatial scales (patch sizes).
Connectivity metrics	Mean Euclidean Nearest Neighbor Distance*	NND	The distance to the nearest neighboring patch of the same type, based on shortest edge-to-edge distance (unit: m).
	Normalized NND**	NNND	The NND normalized by habitat abundance.
	Cohesion*	Cohesion	An index that measures the physical connectedness of the corresponding patch type.

Landscape Metrics (Liu et al., 2016)

Ecosystem Health: Landscape Change

Grassland, Forestland, and Shrubland Converted to Agricultural land 2000 to 2012 (<u>Haarsma et al</u>, 2014)

Crop Type Classification and Rotation Mapping (<u>Asgarian et al</u>, 2016)

Summary of Remote Sensing

Advantages:

- 1) Spatial coverage from small to large: canopy, field, landscape, regional
- 2) Repeated data collection: daily, weekly, monthly, yearly, decadal
- 3) Retrieval of various ecosystem features: crop, soil, water
- 4) Images collected by different platforms/sensors are more and more available

Limitations:

- 1) <u>Cannot provide all</u> the information needed for agricultural research (e.g., soil microbiological features)
- 2) Image collection can be limited by weather
- 3) Some images/technologies are free, some are very expensive
- 4) May generate large volume of data and thus large computational load

Acknowledgements

This project was funded by the Canada's Digital Technology Supercluster, Mitacs, and BC Blueberry Council, .

Thanks to the growers in the study area for supporting this research!

Thanks to Jonathon McIntyre (i-Open Tech), David McCaffrey (Terramera), Carolyn Teasdale and Siva Sabaratnam (BC Ministry of Ag), Eric Gerbrandt (BCBC), Rishi Burlakoti (AAFC), and others for the great help in data collection.

Thanks for your time. Questions?

Bing Lu Department of Geography, Simon Fraser University b_lu@sfu.ca