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A B S T R A C T

The performance of digital soil mapping (DSM) model is highly reliant on the intensity and spatial distribution of
the input soil data points. Increasing the number of soil data points (i.e. samples) improves the accuracy of the
prediction, but it also raises the sampling effort, including the time, money and labor required for field and
laboratory analysis. Thus, optimizing the production of DSMs requires maximizing accuracy while minimizing
cost. In this study, we evaluated a range of strategies for DSM of a farm field using high spatial resolution
ancillary environmental data (e.g. unmanned aerial vehicle-UAV imagery) and compared sampling efforts of soil
data generated from standard laboratory analysis (SLA) and mid-infrared spectroscopy (MIRS) at equivalent
costs. We produced DSMs of a number of soil properties including sand, silt, clay, pH, salinity, organic matter,
and total nitrogen. We employed Conditioned Latin Hypercube Sampling (cLHS) to generate a range of sampling
efforts from the full SLA (n=62) and MIRS (n=308) datasets and contrasted the DSM outcomes modeled using
kriging with external drift (KED). We found that the DSM outputs were most effective, in terms of accuracy and
cost, at 50–60% of the full sampling effort. Although MIRS predictions of soil properties introduced a sizable
amount of error, DSMs produced using the MIRS dataset were more accurate as compared to the outcomes of SLA
datasets at equivalent sampling efforts. The prediction accuracy for DSMs varied across the soil properties with
R2 ranging from 0.82 (for sand) to 0.45 (for total nitrogen) at the optimum sampling effort. The outcomes of the
study highlight that spatially optimized sampling efforts and the use of the MIRS technique substantially im-
prove the cost efficiency and accuracy of kriging-based DSM models for predicting a range of field scale soil
properties.

1. Introduction

Digital soil mapping (DSM) is increasingly being used for managing
and monitoring a wide range of soil-derived ecosystem services, in-
cluding the provisioning of food, fiber and fuel, carbon sequestration
and nutrient cycling. DSM combines information from sparsely popu-
lated point soil data with geospatial data, such as remotely sensed
imagery, to provide continuous predictions of soil properties
(Lagacherie, 2008; Li and Heap, 2011). DSM produces seamless spatial
interpolation of point soil information at scales ranging from broad
global maps to fine scale maps of individual farm fields (Grunwald
et al., 2011; Malone et al., 2017). Detailed knowledge of soil properties
at different scales can help land managers to make spatially explicit
management decisions (Cruz-Cárdenas et al., 2014). Given that soil
properties exhibit high spatial heterogeneity, mapping at finer spatial

scales may be critical to meet specific farm management objectives,
especially for precision agriculture (Malone et al., 2013; Suk Lee and
Ehsani, 2015).

Fine scale DSM requires closely spaced point information (Hengl
et al., 2004); however, there is no consensus regarding the sampling
effort required for the optimum performance of the spatial prediction of
soil properties (Brungard and Boettinger, 2010; Ließ, 2015). The
number of samples, sample spacings, and the actual locations of the
samples are all factors related to the sampling effort that influence the
prediction process (Zhu and Lin, 2010). Enhancing the sampling effort
by adding more samples will improve the accuracy of the predicted
output, but this also increases time, cost and data processing required.
Most sampling designs for DSM either aim to achieve a well-distributed
spatial coverage of the area or to capture the spatial variations of the
feature space (Minasny and McBratney, 2006). A number of studies on
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precision agriculture have explored this at the field scale and (Kerry
et al., 2010) found that sampling interval of 100–120m can provide
adequate spatial coverage and precise soil management of a farm field.
In order to achieve a well-distributed spatial coverage, the sampling
effort may be increased but this does not necessarily result in accurate
predictions. Alternatively, an optimum sampling effort may be obtained
where the spatial variations of the study site can be effectively captured
(Brungard and Boettinger, 2010). After reaching the optimum number
of samples, increasing the number of samples will not improve the
prediction capability of the model; rather, additional samples will result
in diminishing returns in terms of improved accuracy of the model.
Thus, a spatially optimized sampling effort will provide the most ben-
efits in terms of both prediction accuracy and sampling investments.

The efficacy of the sampling design is likely dependant on the sta-
tistical model used for predicting the soil properties. Many studies have
suggested that geospatial environmental variables are important for
capturing spatial variations and improving the prediction accuracy of
the models (Li et al., 2015). Kriging with external drift (KED) is one of
the commonly used hybrid geostatistical models which assumes that the
value at any given point is spatially dependent on the values of the
neighboring points but the variation trend or drift is determined

externally as a linear function of a group of ancillary environmental
variables (Keskin and Grunwald, 2018; Wackernagel, 2003). KED, a
straightforward approach where the trend and residuals are estimated
as part of a single system, has been successfully used for a number of
DSM studies where it obtained similar or better accuracies than simpler
kriging models, like ordinary kriging (Li, 2010) or more complex and
newer hybrid models, like regression kriging (Santra et al., 2017). Thus,
KED can be used as an effective technique for predicting a suite of soil
properties. The outcomes of KED prediction derived using various
sampling designs can then be compared to identify the most effective
sampling effort.

Standard laboratory analysis (SLA) of the soil samples can be a
substantial portion of the overall DSM expense. Recent advances in soil
analysis using mid-infrared spectroscopy (MIRS) have shown promise
to reduce costs compared to SLA (Nocita et al., 2015). MIRS can pro-
duce fast and relatively inexpensive predictions of soil properties, that,
although they are improving, are not as accurate as SLA as they are
derived from SLA predictions (Viscarra Rossel et al., 2006). Larger
sampling efforts, in general, better explain the spatial variability of the
soil properties across a study site (Brus and Heuvelink, 2007). Thus,
MIRS techniques, which allow the addition of more sample points for a

Fig. 1. Flowchart showing the methods utilized for producing digital soil maps (DSM) in this study. UAV refers to unmanned aerial vehicle; R2, CCC, RMSE, and
nRMSE refer to the coefficient of determination, Lin's concordance correlation coefficient, root mean square error, and normalized root-mean-square error re-
spectively.
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given budget, may make up for their reduced accuracy when producing
predictive DSMs. Although MIRS techniques have recently been suc-
cessfully used for landscape scale DSMs (Cobo et al., 2010; Vågen et al.,
2016; Winowiecki et al., 2016), its performance in conjunction with
field-scale DSM for a suite of soil properties is less clear. At the field
scale, soil properties exhibit fine resolution spatial variations requiring
a large set of soil data to produce accurate predictive maps. In precision
agriculture, the use of visible- and near-infrared spectroscopy for on-
the-go proximal soil sensing is widely used, however, use of MIRS is not
common because of the high cost and lack of availability of portable
MIRS instruments (Ge et al., 2011; Viscarra Rossel et al., 2006). Pro-
ducing high resolution field scale DSM using laboratory based MIRS
data could be an effective alternative to current proximal sensing ap-
proaches and/or demonstrate the utility of developing portable MIRS
technology. However, there is a need to understand the trade-offs in
accuracy and costs between using relatively more accurate, but more
expensive SLA datasets and using comparatively less accurate, but less
expensive MIRS datasets for DSM.

To address this research need, we conducted a study to produce
digital maps of a suite of soil properties on a farm field in British
Columbia at 5m resolution using various approaches. The specific ob-
jectives of this study were to: (1) compare a range of equivalent sam-
pling efforts (based on their cost for field work and lab analysis) of SLA
and MIRS in terms of their relative accuracy for predicting a suite of soil
properties, including sand, silt, clay, pH, salinity, soil organic matter
(SOM), and total nitrogen (TN) and (2) assess the trade-offs between
cost and accuracy to determine the most effective sampling effort for
producing predictive maps of these soil properties.

2. Materials and methods

To develop DSMs of selected soil properties for a farm field in
western Fraser Valley of British Columbia, we used a combination of
methods (Fig. 1). We sampled soils using a grid design, then analyzed
them using two different lab analysis approaches. We also applied
multiple statistical and geostatistical tools to evaluate a range of sam-
pling efforts (by pseudo-sampling from the full dataset) and the re-
sulting DSM predictions for the soil properties.

2.1. Study site

The study site was a 54-hectare agricultural field near the City of
Delta, British Columbia, Canada (49.08 N, 123.06W), about 25 km
south of the City of Vancouver (Fig. 2). The field had known salinity
and drainage problems at the time of sampling and was used for organic
vegetable production. The study site was located on Rego Gleysol and
Orthic Humic Gleysol (Umbric Gleysol) formed predominantly from
fluvial parent materials. The study site is in the Fraser River delta and
close to the ocean with elevation ranges from 1.25 to 1.70m above
mean sea level. This area is characterized by a humid maritime climate
with a mean annual temperature of 11.1 °C and a mean annual pre-
cipitation of 928mm based on 30-year climate record (Environment
Canada, 2019).

2.2. Soil sampling and analysis

After reviewing the existing soil map (Luttmerding, 1981) and
conducting preliminary field observations, a 40× 40m grid was de-
veloped for soil sampling (Fig. 2). In 2015, a total of 308 points were
sampled at the 0–15 cm depth across the field. All 308 sample locations
were recorded with a GNSS Pro 6H Differential Global Positioning
System (DGPS) (Trimble Inc., Sunnyvale, California, USA) with post-
processing accuracy ranging from 10 to 50 cm. We derived a sub-
sample set of the original 308 locations to use for SLA, and these were
generally 120m apart (compared to the original 40× 40m grid) but
differed to a limited extent for some locations due to field edges. We

included a few additional randomly selected grid locations for SLA
analysis so that we achieve an equivalent cost for both SLA and MIRS.
In total, 62 of the 308 original samples were retained for the SLA da-
taset.

All 308 samples were air dried and sieved to<2mm. The 62 SLA
samples were sent to the Technical Service Laboratory of British
Columbia Ministry of Environment for particle size analysis using the
hydrometer method and for soil organic carbon (SOC) and TN using the
combustion elemental analysis with a Vario EL Cube Elemental
Analyzer (Elementar, Langenselbold, Germany). Separate aliquots of
the subset of SLA samples was also analyzed at the University of British
Columbia lab facility to measure pH in a 1:1 soil-water ratio, and
electrical conductivity (EC) in a 1:2 soil-water ratio using an Oakton PC
700 pH/conductivity meter. The full 308 sample set was then analyzed
with MIRS using a TENSOR 37 spectrometer (Bruker Instruments,
Ettlingen, Germany). For MIRS analysis, the samples were prepared by
oven drying at 105 °C before grinding with a ball-mill. We then ana-
lyzed three 1 g subsamples of each soil sample and recorded the MIRS
spectral response. Later, we calibrated and validated the recorded
spectra using the OPUS v7.2 Spectroscopy Software and Partial Least
Squares Regression (PLSR) model where the SLA dataset served as the
calibration (70%) and validation (30%) data. We performed a log ratio
transformation of the texture data to achieve a combined composition
of 100% for sand%, silt%, and clay% after PLSR prediction. We used
isometric log ratio transformation for this purpose (Niang et al., 2014).
We used the ‘compositions’ package (van den Boogaart and Tolosana-
Delgado, 2008) within the R software (version 3.3.2, R Core Team,
2018) for log transformation. Finally, we multiplied the SOC data by
1.72 to compute SOM.

2.3. Environmental covariates

A total of 14 environmental covariates were utilized for this study
(Table 1). A 5m spatial resolution digital elevation model (DEM) was
created using the point elevation data (n=308) collected with the
DGPS unit. We used the hydrologically correct DEM interpolation tool
in ArcGIS 10.5 software for producing the DEM (Childs, 2004;
Hutchinson, 1993). A group of topographic covariates was generated
from this DEM using SAGA 2.1.2 software based on the work of Behrens
et al. (2010), Lacoste et al. (2014), and Malone et al. (2009). The first
and second derivatives, namely aspect, slope, multiresolution index of
valley bottom flatness (MRVBF), multiresolution index of the ridge top
flatness (MRRTF), positive and negative topographic openness, valley
depth, terrain ruggedness index (TRI), total curvature, and total wet-
ness index (TWI) were derived from the DEM.

In July 2016, an unmanned aerial vehicle (UAV) was flown over the
study site to capture images in the visible bands (red-green-blue: RGB)
of the electromagnetic spectrum. We used a DJI Matrice UAV which had
a Zenmuse X3 CMOS sensor of 12.4 megapixels and 20mm focal length.
The flight altitude was 30m above ground level capturing images of
2 cm spatial resolution. We processed the images and resampled to
derive two covariates at 5m resolution from this RGB imagery – the
green band reflectance was used directly and another covariate (aver-
aged RGB band reflectance) was generated by averaging the reflectance
of the three bands for each pixel (Amini et al., 2005; Levin et al., 2005).
These two covariates were selected to utilize the variation in soil and
vegetation color. The historic polygon-based soil map, developed in
1981 and comprised of only 3 soil classes (Luttmerding, 1981), was
used to derive a raster layer of clay content at 5m resolution to use as
an additional covariate. The polygon map consisted of single-compo-
nent map units for our study site. We extracted values from the polygon
soil map using the 40× 40m sampling grid and then, utilized Inverse
Distance Weighting (IDW) interpolation to produce a raster surface.

S.S. Paul, et al. Geoderma 356 (2019) 113925

3



Fig. 2. Location of the study site (49.08 N, 123.06W) showing the standard laboratory analysis (SLA, n=62) and mid-infrared spectroscopy (MIRS, n=308) sample
points following a 40× 40m grid. The SLA samples were also analyzed with MIRS.

Table 1
Environmental covariates used for digital soil mapping in this study.

Environmental covariate type Input representative data Source data

Terrain Digital elevation model (DEM) Digital Elevation Model
Aspect
Slope
Multiresolution index of valley bottom flatness (MRVBF)
Multiresolution index of the ridge top flatness (MRRTF)
Positive topographic openness
Negative topographic openness
Valley depth
Terrain ruggedness index (TRI)
Total curvature
Total wetness index (TWI)

Vegetation & management Green band reflectance Unmanned aerial vehicle image
Averaged RGB band reflectance

Soil type Clay raster surface Historic soil map
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2.4. Sampling efforts and conditioned Latin hypercube sampling

We used the Conditioned Latin Hypercube Sampling (cLHS) tech-
nique to develop several sampling efforts for both MIRS (n=308) and
SLA (n=62) datasets using 10–90% of the total data points in 10%
increments (Table 2). cLHS is a stratified random sampling technique
that selects locations representing the spatial variability of the multiple
input environmental covariates (Minasny and McBratney, 2006). The
‘clhs’ package (Roudier, 2014) within the R software (version 3.3.2, R
Core Team, 2018) was used to design all sampling efforts. We utilized
the environmental covariates listed in Table 1 for cLHS analysis. Sam-
pling and analysis costs of each soil sample for both SLA and MIRS
analyses were determined based on the cost of the external laboratory
analyses, labor, and materials. The costs for SLA analyses, including the
field sampling, was ~40C$/sample whereas the cost of MIRS analysis
including the field sampling was ~8C$/sample. All laboratory fees are
expressed on a cost-recovery basis.

2.5. Prediction and mapping

We used kriging with external drift (KED) to scale from point data to
a continuous map of the entire field. The prediction using KED is based
on the spatial correlation between the data points as well as the spatial
information derived by the auxiliary environmental variables. As the
name suggests, the drift is defined externally by the environmental
variables rather than as a function of the coordinates of the data points
(Wackernagel, 2003). In KED, prediction at an unknown location is
derived by the following equation (Hengl, 2007):

̂ ∑= = zz (s ) w (s )· (s )0
1 1

n

i 0) i
(1)

for

∑ = = ……= w (s )·q (s ) q (s ); k 1, 2, ,p
1 1

n

i 0 k i k 0
(2)

where ̂z (s0) is the target soil property predicted at location s0, qk's are
the environmental covariates, p is the number of environmental cov-
ariates. For kriging, it is critical to determine the spatial autocorrelation
of the input data, i.e. semivariance which increases with distance. The
distance where it stabilizes within the study area extent determines the
range of the spatial autocorrelation (Malone et al., 2013). We used the
‘gstat’ package for R software (Pebesma and Heuvelink, 2016) to per-
form KED interpolations. The KED model used the environmental
covariates listed in Table 1. However, we performed a Pearson corre-
lation analysis to evaluate the relationship between the target soil
property and the environmental covariates. Then, in KED prediction,
we only included the variables which are highly correlated (r≥ 0.20 or
r≤−0.20) with the target soil property. For example, sand content of
the soil appeared to have meaningful correlation with averaged RGB
band reflectance (r=0.21), clay raster surface (r=−0.46), DEM
(r=−0.22), MRRTF (r=0.54), MRVBF (r=−0.43), and valley depth
(r=−0.26). Thus, we only included these six variables in the KED
model for predicting the sand content.

2.6. Training and testing of the prediction models

We built and assessed the KED models separately for all the sam-
pling efforts derived from the SLA and MIRS datasets. We randomly
separated 25% (n=16) samples from the ‘100% sampling effort’ of SLA
dataset and utilized them for independent validation of all 20 models.
Given the small sample size of the validation data set, this was repeated
five times using a new set of randomly selected validation data for each
iteration. We then reported the mean and standard deviation of the
accuracy metrics for the five iterations.

We used four error indices for measuring the model performance: (i)
the coefficient of determination (R2); (ii) the Lin's concordance corre-
lation coefficient (CCC); (iii) the root mean square error (RMSE); and
(iv) the normalized root-mean-square error (nRMSE), where RMSE is
normalized by dividing by the range of the observed data (Shen et al.,
2016).

3. Results and discussion

3.1. Summary of soil properties and prediction using MIRS

There was considerable variability in different soil properties across
the study site (Table 3). The soil was dominated by silt and relatively
high clay content. The soil pH was within the optimum tolerance range
of the cultivated crops, but the soil salinity (determined by EC) was
relatively high. While the mean EC values below the 4 dS/m threshold
were identified for crop production in this region (Bertrand, 1991), EC
values determined in our study were as high as 16.9 dS/m The SOM and

Table 2
Number of samples and total cost of various equivalent sampling efforts of
standard laboratory analysis (SLA) and mid-infrared spectroscopy (MIRS).

Sampling
effort

Number of
SLA
samples

Number of
SLA
samples/ha

Number of
MIRS
samples

Number of
MIRS
samples/ha

Total
cost
(C$)

100% 62 1.15 308 5.70 2464
90% 56 1.04 277 5.13 2216
80% 50 0.93 246 4.56 1968
70% 43 0.80 216 4.00 1728
60% 37 0.69 185 3.43 1480
50% 31 0.57 154 2.85 1232
40% 25 0.46 123 2.28 984
30% 19 0.35 92 1.70 736
20% 12 0.22 62 1.15 496
10% 6 0.11 31 0.57 248

Table 3
Summary statistics for soil sand, silt, clay, pH, electrical conductivity (EC), soil organic matter (SOM), and total nitrogen (TN) from the 0–15 cm depth for standard
laboratory analysis (SLA) and mid-infrared spectroscopy (MIRS). CV refers to the coefficient of variation. The MIRS prediction accuracy derived from the SLA using
partial least square regression is illustrated by the coefficient of determination (R2) and root mean square error (RMSE).

Soil property SLA analyzed samples
(n=62)

MIRS analyzed samples
(n=308)

MIRS prediction accuracy

Mean CV Skewness Mean CV Skewness MIRS - R2 MIRS - RMSE

Sand (%) 33.2 0.37 0.02 37.1 0.31 0.25 0.79 8.43
Silt (%) 50.4 0.19 0.08 47.6 0.20 −0.01 0.78 6.57
Clay (%) 16.4 0.27 0.73 15.1 0.26 0.85 0.78 2.72
pH 5.5 0.05 0.52 5.6 0.05 0.39 0.71 0.42
EC (dS/m) 2.23 1.07 2.02 5.05 0.72 0.69 0.69 3.13
SOM (%) 5.4 0.20 −1.07 5.1 0.18 −1.02 0.87 0.46
TN (%) 0.28 0.21 −0.91 0.26 0.19 −0.61 0.88 0.04
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TN were with the optimum ranges for vegetable production.
The skewness of the data indicated close to a normal distribution for

most of the soil properties, with the exception of EC. Kriging inter-
polation, in general, does not perform well for highly skewed data
(Ouyang et al., 2003) and thus, normality transformations were per-
formed if data became highly skewed with different cLHS selections of
sampling efforts.

Models derived from SLA and MIRS spectra using the PLSR were
fairly accuracy for some soil properties, but not all (Table 3) high-
lighting the difference between SLA and MIRS data. The best predic-
tions were attained for SOM and TN with R2 values nearing 90%, while
the pH and EC were predicted with lower accuracies (R2 around 70%).
Prediction accuracies for sand, silt, and clay were intermediate with R2

values of nearly 80% and fell within or close to the range of R2 values
reported by other studies using MIRS and PLSR. For example,
Masserschmidt et al. (1999) achieved R2 of> 90% for SOM and Janik
and Skjemstad (1995) reported an R2 of 88% for N. Our findings were
consistent with others who reported, consistently lower prediction ac-
curacies for pH and EC. Janik et al. (1998) predicted EC with an R2 of
23%, while Janik and Skjemstad (1995) found R2 of 72% for predicting
pH using the same techniques. In addition, Janik et al. (1998) predicted
sand, silt, and clay with an R2 of 88%, which is close to the accuracy we
achieved in our study. While the reduction in accuracy due to modeling
MIRS spectra is clear, particularly for some soil properties (i.e. up to
30% reduction), the cost savings for the differences in accuracy are
large. In the present study, MIRS enabled about 5 times the amount of
sampling for an equivalent cost.

3.2. Semivariogram – the analysis of spatial autocorrelation

The semivariogram analysis was used to compute the experimental
variograms (EV), which identified the spatial structure of the data to be
used for prediction. It was observed that the spatial structure weakens
with decreasing sampling efforts (e.g. from 60% to 20% sampling ef-
fort). At the minimum sampling efforts (i.e. 10%, 20%, and 30%) there
were limited to no spatial patterns, even after short separation dis-
tances, especially for the variograms of the SLA dataset.

As the spatial structure of the data changed with varying sampling
efforts, the shape and structure of the EVs also differed. It was evident
that the variograms were considerably different from each other for the
varying intensities of sampling effort, with clear differences between
the 60–100% and 20–40% sampling efforts. An example of how the EVs
differed for various sampling efforts of the MIRS for TN is shown in
Fig. 3. The maximum range of spatial autocorrelation was observed at
the 100% sampling effort as 300m. The range remained close to 300m
with the decreasing sampling intensities until it reached 60% sampling

effort but subsequently, the range declined significantly. Moreover, the
nugget effect representing the measurement errors or microscale var-
iation causing a discontinuity in the EV near the origin (0,0) becomes
larger with decreasing sample efforts. The higher nugget effect may
result from the sparse sample distribution at the decreased sampling
effort and consequent decline in spatial autocorrelation (Robinson and
Metternicht, 2006). The decline of the spatial structure can be further
realized if the nugget-to-sill ratios (N/S) are compared where N/
S < 0.25 indicates strong spatial dependence and N/S ranging between
0.25 and 0.75 refers to moderate spatial dependence, and finally, N/
S > 0.75 represents weak spatial dependence indicating poor or
meaningless kriging prediction (Cambardella et al., 1994; Duffera et al.,
2007). For the example demonstrated in Fig. 3, the N/S ratio ranged
between 0.25 and 0.49 for the sampling efforts of 60% to 100%, in-
dicating strong to moderate spatial dependence. However, at 40%
sampling effort, the ratio declined to 0.81, which refers to poor spatial
dependence, and at 20% sampling effort there was no spatial auto-
correlation as observed by the level straight line of EV (Liu et al., 2006).
Similar results were observed for the other soil properties for which
50% to 60% sampling efforts were found as the optimum mark after
which the spatial autocorrelation declined substantially.

We also observed that the variance decreased or flattened out with
the increasing lag distance and thus, at some reduced sampling efforts,
EV could not be constructed (Kerry and Oliver, 2007). In the case of SLA
sampling efforts, which comprise 80% fewer samples than its MIRS
counterpart, poor spatial autocorrelation and variograms were detected
even at higher sampling efforts. Fig. 4 displays examples of DSM for the
study field at 5m resolution of sand% and organic carbon% produced
with SLA and MIRS datasets at 60% sampling effort. DSMs produced
with MIRS dataset provided a more detailed representation of the sur-
face compared to the DSMs produced with SLA dataset. MIRS DSMs
showed clearly different patterns of soil property distribution than the
SLA DSMs. In the MIRS DSMs, a greater range of values was predicted
and there were fewer fine scale isolated patches of distinct values
compared to the SLA DSMs. We also observed higher kriging prediction
variance and edge effects for the SLA DSMs. Some linear features that
were exhibited in the maps represent wide drainage ditches separating
different field plots or the farm access roads.

3.3. Assessment of model performance

3.3.1. Comparing equivalent sampling efforts of SLA and MIRS
When comparing the SLA and MIRS sampling efforts for predicting

the digital soil maps, our analysis showed that the pattern of prediction
accuracy differed widely across the soil properties and there was a clear
difference in performance between SLA and MIRS (Figs. 5 and 6). It was

Fig. 3. Experimental semivariograms of total soil nitrogen data obtained by mid-infrared spectroscopy (MIRS) at different sampling efforts predicted using kriging
with external drift model.
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evident that MIRS always performed better than SLA at an equivalent
sampling effort but the differences in accuracy decreased as the sam-
pling efforts got smaller. For example, the difference in R2 of sand
prediction ranged from 0.45 to 0.52 for the 40% to 100% sampling
efforts of SLA and MIRS while the difference was as low as 0.14
for< 40% sampling efforts. We also observed that accuracy measures,
i.e. R2, CCC, and nRMSE were not always in agreement when SLA and
MIRS were compared for a specific model. In terms of R2, the pH model
for the MIRS dataset at 100% sampling effort, for instance, was 69%
better than the output using the SLA dataset. However, the same pre-
diction output was only 35% and 18% better when nRMSE and CCC
values, respectively, were compared. Despite the lower lab accuracy as
explained in Section 3.1, the overall performance of the MIRS dataset
was substantially better than that of the SLA dataset for each equivalent
sampling effort. In our analysis, the MIRS dataset had about 5 times
more samples than its SLA counterpart for the same cost, thus capturing
more of the spatial variability across the study site and producing
stronger prediction performances. If equivalent sampling densities (i.e.
number of samples), however, were compared instead of the sampling
efforts, we might obtain different results. For example, both SLA-100%
and MIRS-20% sampling efforts had a total of 62 samples and from the
results, it was clear that SLA-100% performed better than MIRS-20%
sampling efforts for all the soil properties. This might be due to the
prediction inaccuracies occurred during producing the MIRS dataset as
explained in Section 3.1. Yet, our analysis illustrated that the spatial
variability was not effectively captured with such a small number of
samples (i.e. n=62), resulting in weak prediction performances.

Our findings are similar to several previous studies that also con-
firmed that the use of the MIRS technique allowed them to utilize more
sample points for DSM and the additional points helped them acquire
better prediction accuracies without increasing the cost of analysis. A
recent regional-scale study conducted in south-west Germany, using
MIRS and kriging interpolation, generated SOM map with high accu-
racy as indicated by the overall similarity of 48–69% with the existing
digital map (Mirzaeitalarposhti et al. 2017). Mirzaeitalarposhti et al.
(2017) also concluded that the use of MIRS significantly reduced the

cost of their research as 90% of the samples were analyzed with the
MIRS technique although no cost comparison with SLA was provided.
Another study by World Agroforestry Center reported that MIRS ana-
lysis of SOC data reduced the cost by 70% as compared to that of tra-
ditional chemical analysis in their African soil information project
(Nocita et al., 2015). O'Rourke and Holden (2011) found spectroscopic
analysis was 10 times more cost effective than SLA. In our analysis, the
MIRS dataset was 5 times more cost effective than the SLA dataset. The
low cost for MIRS enabled the use of far more data points than SLA for
DSM for an equivalent sampling effort, clearly resulting in better pre-
diction accuracies for all the soil properties.

3.3.2. Trade-offs between cost and accuracy of the predictive models
The results of the model assessment described above clearly show

that the relationship between sampling efforts and prediction accuracy
was generally non-linear for most of the soil properties (Figs. 5 and 6).
With decreasing sampling efforts, the prediction accuracy declined
exponentially for most soil properties regardless of methodology or
accuracy metric. In a few cases, the decline was sharper and more
linear, e.g. the decline in CCC of silt prediction between 50% and 20%
of SLA sampling efforts (Fig. 5), and the decline in R2 of pH prediction
between 50% and 10% of MIRS sampling efforts (Fig. 6).

We found that the prediction accuracies significantly improved up
to the 50% to 60% sampling efforts of both SLA and MIRS and after this
point, the accuracy did not equally improve. Similar results were ob-
tained by Simbahan and Dobermann (2006) when they tested the
prediction accuracy of a regression kriging model for SOC using sample
sizes of 50, 100, 150, and 200 and found that RMSE of prediction did
not improve or minimally improved after reaching the sample size of
100. However, as we already mentioned, predictions using the MIRS
datasets were more accurate than the predictions using the SLA datasets
at equivalent sampling efforts. While data points were added with the
increasing sampling efforts, the spatial autocorrelation was captured at
the 50% to 60% sampling effort, which resulted in the most effective
prediction performance in terms of both the prediction accuracy and
cost. For example, the CCC values of sand prediction using the MIRS

d c 

b a 

Fig. 4. Examples of digital soil maps for the study field at 5m resolution of sand% produced with (a) standard laboratory analysis (SLA) or (b) mid-infrared
spectroscopy (MIRS) and organic carbon% (c) with SLA or (d) with MIRS.
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dataset were improved by 184% between 10% and 60% sampling ef-
forts, whereas between 60% and 100% sampling efforts accuracy only
improved by 4%. This 4% improvement in accuracy for CCC between
the 60% and 100% sampling efforts cost 984C$; i.e. 246C$/1% accu-
racy improvement. In contrast, an investment of only 7C$/1% accuracy
improvement of CCC was required between 10% and 60% sapling ef-
forts. For a dynamic soil property such as pH, the prediction using MIRS
dataset required an investment of 4C$/1% improvement of CCC be-
tween 10% and 50% sampling efforts, whereas the investment was
93C$/1% improvement between 50% and 100% sampling efforts.
Mapping using the full dataset of 308 points with SLA would have cost
12,320C$, whereas the total cost of full MIRS dataset was only 2464C$,
highlighting the cost efficiency of using the MIRS technique. Although
the investment for 1% accuracy improvement varies for different soil
properties, it was clear that the model performance was most cost-ef-
fective at the 50% to 60% sampling efforts considering the high in-
cremental cost and the unequal gain in the prediction accuracy above
60%.

Thus, applying the cLHS sample selection technique and sampling at
an intensity of 2–3 samples per hectare (i.e. 50–60% data points of the
initial sampling effort derived from a 40× 40m grid) provided the
most effective sample design for DSM for our study field in terms of the

accuracy of the KED model and costs. This sampling density is sub-
stantially different than that determined by Kerry et al. (2010) for a
study field in Wallingford, England. Using a 30× 30m sampling grid
for their analysis, they reported that spatial variability was captured
most effectively at the 100–120m sampling interval (i.e. 0.7–1 sample
per hectare). Although our sampling intensity was higher than in
Wallingford, this may not be the most effective intensity in all cases as
soil property, environmental conditions, and management strategy vary
from site to site. While it is unlikely that farmers would sample at such
high density by hand frequently, our analysis demonstrates the in-
tensity of sampling that could be employed to calibrate hand-held or
tractor mounted MIRS techniques.

4. Conclusions

Identifying an effective sampling effort is critical for maximizing the
accuracy and minimizing the cost of DSM models. We compared 20
different sampling efforts derived from the datasets of standard la-
boratory analysis (SLA) and mid-infrared spectroscopy (MIRS) for
producing digital maps of a suite of soil properties including sand, silt,
clay, pH, EC, SOM and TN. We determined that at an equivalent sam-
pling effort the MIRS dataset produced more accurate maps of selected

Fig. 5. Model assessment of the prediction of sand, silt, and clay at various equivalent sampling efforts of standard laboratory analysis (SLA) and mid-infrared
spectroscopy (MIRS) datasets using kriging with external drift. Means and standard deviation (error bars) of the iterative analysis of coefficient of determination (R2),
Lin's concordance correlation coefficient (CCC), and normalized root mean square error (nRMSE) are shown.
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soil properties as compared to the maps predicted by SLA datasets, al-
though the prediction accuracy varied across the soil properties and by
accuracy metric (e.g. R2, CCC, and nRMSE). Our analysis showed that
the cost per improvement in accuracy with increasing sampling efforts
was optimized at the 50–60% sampling effort. Thus, a sampling density
of 2–3 samples per hectare, selected using a spatial sample selection
technique (e.g. cLHS), and analyzed using MIRS in the lab was the most
cost effective approach for the production of accurate DSMs for our
study field. However, these findings may vary for mapping in other crop
fields with different soils, topography or management history. Hence,

further analysis should explore how these findings may differ based on
soil type, environmental covariates, or field management.
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Appendix 1

Sampling ef-
forts

Soil prop-
erty

Metrics SLA SLA SD MIRS MIRS
SD

Metrics SLA SLA SD MIRS MIRS
SD

Metrics
(%)

SLA SLA SD MIRS MIRS.SD

100% Sand R2 0.430 0.033 0.880 0.020 CCC 0.570 0.029 0.847 0.044 nRMSE 22.048 2.119 12.771 0.753
90% Sand R2 0.410 0.024 0.870 0.030 CCC 0.570 0.029 0.836 0.029 nRMSE 22.849 1.130 12.909 1.221
80% Sand R2 0.390 0.018 0.880 0.030 CCC 0.548 0.038 0.816 0.049 nRMSE 23.334 1.849 13.316 1.470
70% Sand R2 0.360 0.028 0.850 0.042 CCC 0.551 0.025 0.823 0.052 nRMSE 23.261 2.735 13.870 3.053
60% Sand R2 0.350 0.030 0.820 0.036 CCC 0.540 0.037 0.815 0.038 nRMSE 26.040 3.094 14.173 2.283
50% Sand R2 0.270 0.040 0.710 0.036 CCC 0.460 0.030 0.770 0.042 nRMSE 28.271 2.873 14.937 1.912
40% Sand R2 0.180 0.030 0.600 0.028 CCC 0.280 0.046 0.686 0.047 nRMSE 51.125 5.923 17.615 2.568
30% Sand R2 0.070 0.029 0.390 0.016 CCC 0.060 0.038 0.538 0.044 nRMSE 73.630 4.892 22.077 2.739
20% Sand R2 0.030 0.030 0.350 0.025 CCC 0.039 0.035 0.422 0.049 nRMSE 75.411 6.138 27.530 4.836
10% Sand R2 0.004 0.003 0.150 0.038 CCC 0.002 0.002 0.286 0.036 nRMSE 80.693 5.302 44.801 3.882
100% Silt R2 0.520 0.037 0.870 0.020 CCC 0.673 0.034 0.880 0.035 nRMSE 24.903 1.857 11.392 1.220

Fig. 6. Model assessment of the prediction of soil pH, electrical conductivity (EC), soil organic matter (SOM) and total nitrogen (TN) at various sampling efforts of
standard laboratory analysis (SLA) and mid-infrared spectroscopy (MIRS) datasets using kriging with external drift. Means and standard deviation (error bars) of the
iterative analysis of the coefficient of determination (R2), Lin's concordance correlation coefficient (CCC), and normalized root mean square error (nRMSE) are
shown.
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90% Silt R2 0.490 0.026 0.830 0.034 CCC 0.665 0.030 0.860 0.027 nRMSE 25.432 2.119 13.037 1.813
80% Silt R2 0.500 0.031 0.830 0.029 CCC 0.658 0.028 0.870 0.062 nRMSE 25.318 1.733 12.974 2.514
70% Silt R2 0.460 0.028 0.840 0.027 CCC 0.651 0.043 0.830 0.032 nRMSE 26.631 3.025 13.752 1.376
60% Silt R2 0.430 0.027 0.790 0.025 CCC 0.641 0.041 0.810 0.053 nRMSE 26.089 3.017 14.253 1.791
50% Silt R2 0.410 0.018 0.710 0.032 CCC 0.612 0.057 0.770 0.046 nRMSE 28.305 4.931 15.179 2.823
40% Silt R2 0.270 0.017 0.570 0.025 CCC 0.388 0.054 0.680 0.052 nRMSE 53.701 5.923 20.623 3.247
30% Silt R2 0.130 0.016 0.500 0.026 CCC 0.160 0.035 0.650 0.033 nRMSE 62.417 4.451 22.827 5.346
20% Silt R2 0.100 0.008 0.310 0.023 CCC 0.090 0.034 0.420 0.025 nRMSE 68.532 8.378 28.661 4.581
10% Silt R2 0.070 0.002 0.200 0.017 CCC 0.028 0.011 0.390 0.021 nRMSE 93.572 5.404 43.172 5.591
100% Clay R2 0.430 0.033 0.780 0.017 CCC 0.617 0.027 0.870 0.024 nRMSE 10.783 2.547 7.832 1.512
90% Clay R2 0.390 0.037 0.760 0.023 CCC 0.604 0.025 0.860 0.016 nRMSE 11.935 2.059 8.015 2.063
80% Clay R2 0.340 0.036 0.690 0.026 CCC 0.582 0.030 0.830 0.047 nRMSE 13.831 2.392 8.573 1.462
70% Clay R2 0.350 0.041 0.660 0.017 CCC 0.535 0.038 0.810 0.023 nRMSE 14.552 1.586 9.117 1.647
60% Clay R2 0.290 0.033 0.670 0.039 CCC 0.427 0.053 0.820 0.033 nRMSE 19.085 4.373 8.714 2.308
50% Clay R2 0.220 0.025 0.620 0.016 CCC 0.382 0.039 0.780 0.029 nRMSE 26.972 3.813 8.937 3.015
40% Clay R2 0.120 0.031 0.470 0.013 CCC 0.173 0.024 0.720 0.051 nRMSE 42.584 7.004 12.470 2.672
30% Clay R2 0.070 0.010 0.280 0.018 CCC 0.118 0.032 0.530 0.052 nRMSE 46.446 6.191 13.179 4.661
20% Clay R2 0.030 0.006 0.160 0.010 CCC 0.091 0.026 0.340 0.047 nRMSE 53.504 4.338 21.017 2.803
10% Clay R2 0.007 0.007 0.050 0.008 CCC 0.022 0.019 0.210 0.051 nRMSE 54.730 7.074 26.749 3.152
100% pH R2 0.338 0.015 0.532 0.027 CCC 0.484 0.016 0.607 0.009 nRMSE 14.463 1.518 11.043 1.582
90% pH R2 0.314 0.018 0.536 0.014 CCC 0.464 0.013 0.572 0.018 nRMSE 14.861 2.500 11.364 0.834
80% pH R2 0.310 0.014 0.514 0.024 CCC 0.456 0.012 0.551 0.016 nRMSE 15.849 2.015 11.973 1.260
70% pH R2 0.293 0.019 0.524 0.020 CCC 0.427 0.023 0.537 0.013 nRMSE 17.181 1.284 12.351 1.145
60% pH R2 0.297 0.020 0.490 0.025 CCC 0.422 0.012 0.528 0.013 nRMSE 18.447 2.887 12.947 2.731
50% pH R2 0.253 0.026 0.500 0.018 CCC 0.397 0.016 0.536 0.007 nRMSE 25.768 4.092 13.628 3.203
40% pH R2 0.169 0.035 0.360 0.011 CCC 0.243 0.018 0.392 0.026 nRMSE 29.058 3.739 13.774 2.005
30% pH R2 0.124 0.010 0.326 0.017 CCC 0.147 0.008 0.314 0.027 nRMSE 42.869 3.681 15.735 2.525
20% pH R2 0.056 0.022 0.210 0.017 CCC 0.067 0.007 0.172 0.012 nRMSE 50.630 5.945 28.436 3.568
10% pH R2 0.036 0.013 0.094 0.022 CCC 0.015 0.008 0.153 0.009 nRMSE 59.151 2.919 35.843 2.093
100% EC R2 0.422 0.032 0.608 0.014 CCC 0.307 0.032 0.647 0.011 nRMSE 29.194 2.907 10.751 1.020
90% EC R2 0.386 0.026 0.588 0.018 CCC 0.311 0.023 0.582 0.024 nRMSE 30.010 3.130 11.851 1.694
80% EC R2 0.368 0.028 0.594 0.025 CCC 0.286 0.011 0.579 0.014 nRMSE 31.665 2.629 12.594 1.379
70% EC R2 0.338 0.035 0.582 0.023 CCC 0.237 0.012 0.527 0.021 nRMSE 32.477 2.215 12.392 1.173
60% EC R2 0.349 0.028 0.551 0.029 CCC 0.234 0.026 0.463 0.018 nRMSE 32.870 1.738 16.220 2.335
50% EC R2 0.237 0.032 0.473 0.035 CCC 0.192 0.033 0.391 0.037 nRMSE 36.560 2.931 16.951 1.852
40% EC R2 0.136 0.037 0.357 0.022 CCC 0.148 0.017 0.214 0.015 nRMSE 36.780 2.039 20.732 1.074
30% EC R2 0.108 0.034 0.308 0.037 CCC 0.126 0.012 0.206 0.023 nRMSE 39.905 1.771 27.822 3.960
20% EC R2 0.054 0.024 0.164 0.019 CCC 0.092 0.012 0.173 0.017 nRMSE 42.757 1.415 29.833 2.476
10% EC R2 0.031 0.020 0.044 0.019 CCC 0.024 0.020 0.171 0.012 nRMSE 48.091 5.755 36.701 1.965
100% SOM R2 0.472 0.029 0.572 0.034 CCC 0.627 0.022 0.804 0.011 nRMSE 9.233 0.992 8.371 1.663
90% SOM R2 0.454 0.035 0.556 0.036 CCC 0.624 0.017 0.762 0.024 nRMSE 9.815 0.752 8.299 1.105
80% SOM R2 0.456 0.038 0.568 0.025 CCC 0.621 0.016 0.716 0.014 nRMSE 11.458 0.846 8.861 1.048
70% SOM R2 0.442 0.033 0.542 0.038 CCC 0.592 0.023 0.663 0.021 nRMSE 11.828 0.959 9.829 0.902
60% SOM R2 0.437 0.026 0.511 0.031 CCC 0.562 0.016 0.651 0.018 nRMSE 12.676 1.311 10.884 0.893
50% SOM R2 0.306 0.031 0.447 0.027 CCC 0.311 0.031 0.462 0.037 nRMSE 15.168 2.017 13.034 2.117
40% SOM R2 0.128 0.021 0.258 0.018 CCC 0.206 0.011 0.313 0.015 nRMSE 21.209 3.894 13.790 2.067
30% SOM R2 0.018 0.010 0.132 0.032 CCC 0.136 0.018 0.201 0.023 nRMSE 25.385 2.504 15.480 2.671
20% SOM R2 0.006 0.005 0.154 0.029 CCC 0.072 0.016 0.187 0.017 nRMSE 33.633 2.900 17.713 1.332
10% SOM R2 0.002 0.008 0.076 0.023 CCC 0.031 0.027 0.113 0.012 nRMSE 34.781 2.143 27.480 1.255
100% TN R2 0.358 0.031 0.498 0.021 CCC 0.438 0.029 0.612 0.030 nRMSE 18.547 1.499 12.564 1.980
90% TN R2 0.352 0.025 0.492 0.014 CCC 0.432 0.029 0.580 0.032 nRMSE 19.952 1.824 14.805 1.419
80% TN R2 0.326 0.019 0.484 0.019 CCC 0.364 0.024 0.530 0.040 nRMSE 20.728 1.155 15.405 0.570
70% TN R2 0.334 0.022 0.458 0.040 CCC 0.346 0.025 0.528 0.029 nRMSE 23.132 1.881 17.646 2.005
60% TN R2 0.258 0.034 0.452 0.015 CCC 0.339 0.037 0.517 0.012 nRMSE 24.887 1.096 18.738 1.893
50% TN R2 0.173 0.027 0.415 0.022 CCC 0.331 0.041 0.443 0.035 nRMSE 26.908 2.168 20.362 1.005
40% TN R2 0.114 0.035 0.272 0.029 CCC 0.236 0.019 0.322 0.014 nRMSE 28.378 2.047 22.562 0.893
30% TN R2 0.064 0.036 0.158 0.034 CCC 0.096 0.018 0.240 0.024 nRMSE 38.305 1.634 26.452 1.201
20% TN R2 0.028 0.011 0.144 0.023 CCC 0.082 0.016 0.154 0.023 nRMSE 50.330 3.717 27.052 1.700
10% TN R2 0.014 0.011 0.084 0.009 CCC 0.044 0.034 0.144 0.019 nRMSE 60.134 3.732 36.375 2.796
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